Analysis of Crop Yield Prediction Using Data Mining Techniques
نویسندگان
چکیده
Agrarian sector in India is facing rigorous problem to maximize the crop productivity. More than 60 percent of the crop still depends on monsoon rainfall. Recent developments in Information Technology for agriculture field has become an interesting research area to predict the crop yield. The problem of yield prediction is a major problem that remains to be solved based on available data. Data Mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. This paper presents a brief analysis of crop yield prediction using Multiple Linear Regression (MLR) technique and Density based clustering technique for the selected region i.e. East Godavari district of Andhra Pradesh in India.
منابع مشابه
Prediction of Student Learning Styles using Data Mining Techniques
This paper focuses on the prediction of student learning styles using data mining techniques within their institutions. This prediction was aimed at finding out how different learning styles are achieved within learning environments which are specifically influenced by already existing factors. These learning styles, have been affected by different factors that are mainly engraved and found wit...
متن کاملCrop Yield Prediction with Aid of Optimal Neural Network in Spatial Data Mining: New Approaches
Data Mining is the process of extracting useful information from large datasets. Data mining techniques till now used in business and corporate sectors may be used in agriculture for data characterization, discrimination and predictive and forecasting purposes. Data mining in agriculture is a novel research field. Recently Knowledge Management in agriculture facilitating extraction, storage, re...
متن کاملکاربرد شبکههای عصبی مصنوعی در پیشبینی عملکرد محصول کلزا
Crop yield prediction has an important role in agricultural policies such as specification of the crop price. Crop yield prediction researches have been based on regression analysis. In this research canola yield was predicted using Artificial Neural Networks (ANN) using 11 crop year climate data (1998-2009) in Gonbad-e-Kavoos region of Golestan province. ANN inputs were mean weekly rainfall, m...
متن کاملCustomer Behavior Mining Framework (CBMF) using clustering and classification techniques
The present study proposes a Customer Behavior Mining Framework on the basis of data mining techniques in a telecom company. This framework takes into account the customers’ behavior patterns and predicts the way they may act in the future. Firstly, clustering technique is used to implement portfolio analysis and previous customers are divided based on socio-demographic features using k</em...
متن کاملApplication of Vegetation Indices for Agricultural Crop Yield Prediction Using Neural Network Techniques
Spatial variability in a crop field creates a need for precision agriculture. Economical and rapid means of identifying spatial variability is obtained through the use of geotechnology (remotely sensed images of the crop field, image processing, GIS modeling approach, and GPS usage) and data mining techniques for model development. Higher-end image processing techniques are followed to establis...
متن کامل